Многогранники
Основные темы:
Понятие многогранника.
Тетраэдр.
Параллелепипед.
Призма.
Пирамида.
Правильные многогранники.
Задачи на построение сечения.
Понятие многогранника:

К определению понятия многогранника существует два подхода. Проведем аналогию с понятием многоугольника. Напомним, что в планиметрии под многоугольником мы понимали замкнутую линию без самопересечений, составленную из отрезков (рис. 1а). Также многоугольник можно рассматривать как часть плоскости, ограниченную этой линией, включая ее саму (рис. 1б). При изучении тел в пространстве мы будем пользоваться вторым толкованием понятия многоугольник. Так, любой многоугольник в пространстве есть плоская поверхность.


По аналогии с первым толкованием понятия многоугольника рассматривается следующее толкование понятия многогранника. Многогранник - поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело. В данной трактовке многогранник можно называть еще многогранной поверхностью.

Вторая трактовка понятия определяет многогранник как геометрическое тело, ограниченное конечным числом плоских многоугольников.

В дальнейшем, мы будем использовать вторую трактовку понятия многогранника.

Примеры многогранников:

Уже известные вам тетраэдр и параллелепипед являются многогранниками. Потому что они являются геометрическими телами, ограниченные конечным числом плоских многоугольников. Еще один пример многогранника — октаэдр (рис. 2)


Рисунок 2 – изображение октаэдра
Элементы многогранника:

Многоугольники, ограничивающие многогранник, называются его гранями. Так, у тетраэдра и октаэдра гранями являются треугольники. У тетраэдра 4 грани, отсюда и его название от греч. τετρά-εδρον — четырёхгранник. У октаэдра 8 граней, а от греческого οκτάεδρον от οκτώ «восемь» + έδρα «основание».

Стороны граней называются ребрами, а концы ребер — вершинами

многогранника. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

Виды многогранников:

Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. В остальных случаях многогранник называется невыпуклым (рис.3).

Практикум
Постройте в динамической среде GeoGebra произвольный невыпуклый многогранник
Практикум
This site was made on Tilda — a website builder that helps to create a website without any code
Create a website